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A method for distributed computing between a host computer
and at least one accelerator device interconnected through a
network includes profiling a data transfer rate and a compu-
tation rate for a range of data sizes to find an optimal chunk
size for the data transfer through the network; splitting or
aggregating a size of the data stored in a memory in the host
computer for encapsulating the data into a chunk with the
optimal chunk size; dispatching the encapsulated data to the
accelerator device; and instructing pipeline computation to
the accelerator device with respect to the encapsulated data
received.
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1
DISTRIBUTED PARALLEL COMPUTATION
WITH ACCELERATION DEVICES

PRIORITY

This application claims priority to Japanese Patent Appli-
cation No. 2012-000972, filed 6 Jan. 2012, and all the benefits
accruing therefrom under 35 U.S.C. §119, the contents of
which in its entirety are herein incorporated by reference.

BACKGROUND

The present invention relates to a distributed computing
technology, and more particularly relates to a distributed par-
allel computation using a plurality of accelerator devices.

Recently, a multi-processor computation using GPUs
(Graphic Processor Units) has been widely used to enhance
computation efficiency and/or computation speed. The GPUs
are typically used as accelerators of a main CPU for enhanc-
ing the computation performance. Such multi-processor
computation architecture often uses a GPU network con-
nected over internal buses such as PCI or PCI-Express etc.
Such GPUs connected by the internal buses are herein
referred to tightly-coupled accelerator devices.

The GPUs are operated in parallel under control by a host
CPU by an adequate programming language to enhance the
computation performance. One example of such program-
ming language may include OpenCL. OpenCL may be
applied to manage data transfer between the host CPU and
GPUs and may be utilized by this invention to minimize the
performance cost of that transfer.

The multi-processor computation architecture in another
scheme has been known such as for example, distributed
computation or grid computation. These multi-processor
computation architectures may include a plurality of servers
or computers which share computations under control by a
host computer or a master computer. In this type of multi-
processor architecture, the computers are connected with an
external bus network such as Ethernet (Trade Mark) and a
network interface card using various physical connection pro-
tocols. The computers may support the entire computation
executed within the network and hence the computers respon-
sible to the distributed computing may also be regarded as the
accelerators. However, the computers in such distributed
computation architecture are connected by the external net-
work though TCP/IP and the computers in the distributed
computing system may be regarded as loosely-coupled accel-
erators.

In the loosely-coupled multi-processor system, the com-
puters or nodes are connected by the external network and
hence, data transfer between the host computer and the accel-
erator devices may be affected by transport conditions includ-
ing data sizes, runtime implementation and network condi-
tions.

Enhancement of the computation performance through
TCP network also has been developed so far; for example, US
Patent Application Publication 2008/029098A1 discloses a
computer system which dynamically segments a large TCP
segment with smaller TCP segments so as to reduce interrupt
frequency. JP2011-170732 discloses the parallel computa-
tion method which divides a functional block into strands and
modifies the functional block depending on computation
time.

In the tightly-coupled acceleration architecture, it has been
proposed that batching many small transfers into one larger
transfer will improve the data transfer performance (reference
NVIDIA OpenCL Best Practice Guide, Section 3.1 “Data
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Transfer between Host and Device™). In addition, Kim, et al.
discloses, in “A New Communication and Computation
Overlapping Model with Loop Sub-Partitioning and
Dynamic Scheduling”, a communication and computation
overlapping model to hide the communication latency in data
parallel programs.

SUMMARY

In one embodiment, a method for distributed computing
between a host computer and at least one accelerator device
interconnected through a network includes profiling a data
transfer rate and a computation rate for a range of data sizes to
find an optimal chunk size for the data transfer through the
network; splitting or aggregating a size of the data stored in a
memory in the host computer for encapsulating the data into
a chunk with the optimal chunk size; dispatching the encap-
sulated data to the accelerator device; and instructing pipeline
computation to the accelerator device with respect to the
encapsulated data received.

In another embodiment, a computer readable storage
medium having computer readable instructions stored
thereon that, when executed by a computer, implement a
method for distributed computing between a host computer
and at least one accelerator device interconnected through a
network. The method includes profiling a data transfer rate
and a computation rate for a range of data sizes to find an
optimal chunk size for the data transfer through the network;
splitting or aggregating a size of the data stored in a memory
in the host computer for encapsulating the data into a chunk
with the optimal chunk size; dispatching the encapsulated
data to the accelerator device; and instructing pipeline com-
putation to the accelerator device with respect to the encap-
sulated data received.

In another embodiment, a host computer for distributed
computing between the host computer and at least one accel-
erator device interconnected through a network includes a
profiler part configured to profile a data transfer rate and a
computation rate for a range of data sizes; a size optimizer
part configured to find an optimal chunk size for the data
transfer through the network from the profiled data transfer
rate and the computation rate; a capsulation part configured to
encapsulate the data stored in a memory of the host computer
by splitting or aggregating into a chunk with the optimal
chunk size; and a dispatch part configured to dispatch the
encapsulated data to the accelerator device and instructing
pipeline computation to the accelerator device with respect to
the encapsulated data received.

In another embodiment, a distributed computing system is
disclosed between a host computer and at least one accelera-
tor device interconnected through a TCP/IP network, the
accelerator device being implemented with an application
program. The host computer includes a profiler part config-
ured to profile a data transfer rate and a computation rate for
a range of data sizes; a size optimizer part configured to find
an optimal chunk size for the data transfer through the net-
work from the profiled data transfer rate and the computation
rate; a capsulation part configured to encapsulate the data
stored in a memory of the host computer by splitting or
aggregating into a chunk with the optimal chunk size; and a
dispatch part configured to dispatch the encapsulated data to
the accelerator and instructing pipeline computation to the
accelerator with respect to the encapsulated data received;
wherein the optimal chunk size is determined to be the data
size where the computation and communication overlapping
ratio is closest to 1 and, if there are multiple such data sizes,
which has the highest data transfer rate between a minimum
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data size and a maximum data size; and wherein the dispatch
part instructs multiple writes of the encapsulated data for
numbers of chunks and instructs execution of operations of
the accelerator on the encapsulated data upon receiving the
encapsulated data.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 shows data transfer costs of distributed computing
in the loosely-coupled system.

FIG. 2 shows a block diagram of a sample distributed
computing system of the present invention.

FIG. 3 shows a functional block diagram of the platforms
for constructing the loosely-coupled system.

FIG. 4 shows a flowchart of the process of the present
distributed computing system.

FIG. 5 shows the detailed process of “Find optimal chunk
size” in FIG. 4.

FIG. 6 shows detailed process of profiling the data transfer
cost and computation cost for the host-to-accelerator path in
FIG. 5.

FIG. 7 shows the detailed process of profiling the data
transfer cost and computation cost for the accelerator-to-host
path in FIG. 5.

FIG. 8 shows the exemplary relations between the trans-
ferRate, the computationRate, and the data size.

FIG. 9 shows an example of data buffer allocation for the
accelerator devices, depending on the optimal chunk size and
application data size.

FIG. 10 shows an example of transferring the data in the
case that the application data is larger than the size of optimal
chunk.

FIG. 11 shows an example of the data processing of the
host and the accelerator device when the application data is
smaller than the size of optimal chunk and thus to be aggre-
gated upon transferring to the accelerator device.

FIG. 12 depicts the pseudo codes of the host, transforming
the conventional kernel computation to the present invention
kernel computation.

FIG. 13 shows the scheme of the improvement on the
pipeline computation of FIG. 4.

FIG. 14 shows the result of improvement of the computa-
tion performance in the system implemented with the present
invention.

DETAILED DESCRIPTION

For the parallel computing architecture developed thus far,
enhancement to reduce latency of the data transport through
the network before computation can begin has not been fully
addressed. Further, connecting fundamentally difterent plat-
form architectures, (such as Power PC™ architecture, Inte]™
architecture, and/or a mainframe architecture such as IBM
SYSTEM 390, etc.) must override the differences between
the computing platforms while optimizing the performance
of the parallel computation through the loosely-coupled
accelerators running application across the platforms.

An aspect of this invention provides a novel distributed
parallel computation architecture which will mitigate differ-
ences between incongruous platforms comprising the appli-
cation environment.

Still another aspect of the present invention provides a
novel distributed computation architecture which may opti-
mize data transfer rate and performance of the parallel com-
putation.
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Further, another aspect of the present invention provides a
method, a program, a host computer and a system for execut-
ing parallel distributed computation for overriding difter-
ences between the platform architecture.

According to the present invention embodiments, the host
computer and the accelerator devices are interconnected
through the external network and the host optimizes a data
size used for distributed computation in the present environ-
ment prior to transmitting application working set data to the
accelerator devices. This optimal data size, termed the “chunk
size”, is based on actual measurements of the communication
rate and the computation rate the accelerator device in the
network. The host computers splits the application data into
segments to encapsulate the data into the optimal chunk and
then dispatches the encapsulated data to the accelerator
devices as well as instructions for parallel computation for the
encapsulated data.

The accelerator devices start the computation upon receiv-
ing each encapsulated data in parallel to the data transfer
without waiting the entire application data such that the par-
allel computation efficiency may be improved by minimizing
communication overhead caused by the data transfer through
the loosely-coupled network.

In other words, each accelerator device receives the encap-
sulated data and instructions and, if necessary, waits for all
data required for the computation to arrive (as dictated by the
host instructions). Once the datum is assembled, the particu-
lar computation dictated by the host instructions (that is, the
“kernel”) is dispatched. Upon completion, output data is sent
by the accelerator device to the host, again according to host
encapsulation instructions.

Hereafter, the present invention will be described depend-
ing on particular embodiments; the described embodiments
should be understood mere description of the best mode and
should not be limitation of the present invention.

Now referring to FIG. 1, data transfer costs of the distrib-
uted computing in the loosely-coupled system will be
explained depending on OSI basic reference model. Each of
the nodes in the system generally comprises the physical
layer 103, a network layer 102, a transport layer 101 and an
application layer 100. The physical layer 103 is responsible
for receiving and sending ethernet (Trade Mark) frames; the
network layer 102 is responsible to form IP packets with
proper data sizes as payloads; the transport layer 101 forms
TCP packets from data processed by the application in the
application layer 100. The application layer 100 pays its cost
as the runtime overhead by the computation of data with the
applications.

The transport layer 101, the network layer 102 and the
physical layer 103 contribute their respective processing
costs and the overall cost to the application may depend on the
data size transferred from the node to another node as TCP/IP
packets. The above data size dependency, as opposed to the
tightly-coupled system, may create extra costs for computa-
tion as well as scalability of the computation.

FIG. 2 shows the block diagram of the sample distributed
computing system 200 of the present invention. The system
200 comprises various computing platforms such as, for
example, the main frame 201, the servers 202, the rack-
mounted servers 203 in which the blade type servers are
disposed in the rack. The main frame 201 may be selected
from z system such as IBM system 390; however, other main
frame with architecture may be used. The server 202 and the
blade servers in the rack-mounted server 203 may comprise a
CPU/CPUs such as IBM POWER and POWER PC (Trade
Mark) which may be implemented as POWER (Trade Mark)
series.
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On the other hand, the platform 204 may comprise the
CPU/CPUs such as Intel XEON (Trade Mark) which may
conventionally referred to x86 architecture. The platforms
depicted in FIG. 2 are each installed with different operating
system and application programs so as to serve requested
services from operators or users. The platforms are connected
by an adequate network 220 such as Ethernet (trade Mark) or
FTTH using optical communication through the hub and/or
switch 210 and the router 230. The platforms may further
comprise a RAM, a ROM, a hard disk drive, a network inter-
face card in Giga bit rate etc. for providing business applica-
tion services to operators.

The platforms communicate the data, commands and mes-
sages through TCP/IP protocol through the network and in the
present invention, the platforms provide distributed compu-
tation environment as a loosely-coupled architecture.
Although the distributed computation may be possible by
using any known protocols or techniques, the OpenCL archi-
tecture may be useful in order to override the differences
between the platforms while using already existing applica-
tion resources.

FIG. 3 shows the functional block diagram 300 of the
platforms for constructing the loosely-coupled system. The
platform 310 has a role of the host and the platform 320 has
the role of the accelerator device. The term ‘“accelerator
device” or more simply referred to “accelerator” herein refers
a separated computer or an information processing apparatus
which communicate with the host to accelerate the entire
computation of the host. The host comprises as its functional
means the host application 311, the application kernel pro-
grams 312 implemented in the host 310, the runtime environ-
ment 313, and the socket interface 314.

The host application 311 comprises a profiler part 311a, a
size optimizer part 3115, a capsulation part 311¢, and a dis-
patcher part 311d. The profiler part profiles the data transfer
rate and the computation rate for a range of data sizes from
MIN_SIZE to MAX_SIZE; here, MIN_SIZE and MAX_
SIZE are possible data sizes transferred between the host and
the accelerator device in the application program. The size
optimizer part 3115 finds and determines an optimal chunk
size for the data transfer through the network based on the
profiled data transfer rate and the computation rate.

The capsulation part 311¢ encapsulates the data stored in a
memory of the host computer by splitting or aggregating into
a chunk with the optimal chunk size. The dispatcher part 3114
dispatches the encapsulated data to the accelerator device
together with instructions for pipeline computation to the
accelerator device with respect to the encapsulated data
received. The profiler 311a, the size optimizer 3115, the
capsulation 311¢, and dispatcher 3114 may not be necessarily
part of Host application 311, but some of them may be a part
of runtime environment 313.

The host application 311 provides various services to users
controlled by the kernel program 312 and in the described
embodiment; the OpenCL APIs may be implemented as one
module of the host application. The kernel program 312 may
be implemented for ZOS, Unix (Trade Mark), Linux (Trade
Mark), or Windows (Trade Mark) 200X server to control
various operation of the host.

Particular embodiment of the host includes OpenCL kernel
programs as one component of the kernel 312 for implement-
ing loosely-coupled system. The runtime environment 313
comprises runtime libraries including OpenCL runtime,
dynamic link libraries which support runtime condition of the
host. The socket interface 314 transmits to the accelerator
device 320 the TCP/IP packets by using socket communica-
tion and in the described embodiment, the socket send/re-
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ceive, RDMA R/W methods or class may be implemented as
one module for supporting OpenCL architecture.

The accelerator device 320 comprises the application ker-
nels 321, buffer objects 322, the runtime environment 323,
the proxy facilities 324 to the host 310, and the socket inter-
face 325. The application kernels 321 provide requested ser-
vices and the buffer objects 322 store various information
used in the accelerator device 320 and in the described
embodiments, the buffer objects 322 receive the input data
and the commands as well as send the computed results from
the application kernel program 321 as the accelerator device
of'the loosely-coupled system.

The runtime environment 323 comprises as its functional
component OpenCL compiler and runtime libraries suitable
for the architecture of the platform as well as executes the
operation instructed by the host 310 together with the proxy
facilities 324 being implemented with OpenCL functions.
The socket interface 325 communicates to the host through
the socket communication and comprises send/receive,
RDMA R/W method or class to the host 310 through the
network 330.

Thus, the loosely-coupled system includes two type of data
processing costs; one is the computation and frame formation
costs and the other is data transfer cost through the network.
The two kinds of costs i.e., computation and data transfer may
be preferably well balanced for smooth and efficient compu-
tation in the distributed computing environments to minimize
wait time for communication latency. In other words, the data
transfer rate and the computation must be optimized so as not
to waste the hardware resources in the accelerator devices.

FIG. 4 shows a flowchart of the process of the present
distributed computing system. The process of FIG. 4 starts
from block S400 and the host examines the network condi-
tions and hardware conditions of the accelerator devices to
determine the optimal chunk size in the system. Although the
details of block S400 will be described elsewhere, the host
measures a response time of a test computation by the accel-
erator devices through the network in block S400. In block
S401, the host allocates buffers and sub-buffer sizes for trans-
ferring the data. Here, the size of the buffer may be deter-
mined by the data size of the objected computation and the
sub-buffer size may be set to the optimal chunk size, or vice
versa, depending on whether data splitting or aggregation is
applied in the described preferred embodiment.

In block S402, the data for the objected computation may
be divided or aggregated such that the data size transferred to
the accelerator device may be contained in the sub-buffer with
the optimized size. Next in block S403, the host transmits the
data with the optimal size together with the commands or
instructions for computation in the accelerator device. In the
described embodiment, the instruction of the computation on
the accelerator device is coded by OpenCL language; how-
ever, other any distributed computation protocols may be
used.

In block S404, the host determines whether or not the data
splitting is applied and the application kernel task allocated to
the accelerator device is associative, thatis to say, whether the
task can be applied with pipelined execution for split data. If
s0 (yes), the host transfers instructions for initiating the pipe-
lined computations to the accelerator device so as to execute
the computation in the accelerators overlapped with data
communication. If the task is not suitable to the pipeline
computing (no), the host transfers conventional loosely-
coupled computation instruction codes without pipelining
and the process of FIG. 4 flows to block S405 to the accel-
erator devices.
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Blocks S405-S408 are processes executed in the accelera-
tor devices responsible for the computations. The accelerator
devices receive the data and the instructions in block S405,
the accelerator device waits until all of the data chunks are
received because the computation is not associative and the
speculative initiation of the computation is illegal. When the
process flows to block S405, the accelerator device starts the
computation after receiving the entire data for the computa-
tion and then returns the results of the computation to the host
in block S408.

Now, when the determination in block S404 returns an
affirmative result (yes), the process goes to block S406 and
the accelerator device initiates the execution of the pipelined
computation over the data chunks and the instructions
received sequentially with the optimized computation-com-
munication overlapping. The accelerator device continues the
pipelined computation over the sequentially transmitted data
chunks to the last and then the accelerator device invokes the
associative operation to combine the partial results with the
pipelined computation. Then, the accelerator device returns
the computed results to the host to complete the commands
received from the host.

FIG. 5 shows the detailed process of block S400 “Find
optimal chunk size” in FIG. 4. The process begins from block
S500 and the host starts to profile the data transfer cost and the
computation pipeline effect in a given runtime and network
environment for both host-to-accelerator and accelerator-to-
host paths independently. Then in block S501, the host deter-
mines the data transfer rate and computation rate using proper
sample computation set which are represented time duration
referred to as elapsedTimel and elapsed Time2; here elapsed-
Timel and elapsedTime2 are variables obtained in the profil-
ing process.

Then the host computes in block S502 the overlapping ratio
using the parameters elapsedTimel and elapsed Time2. The
overlapping ratio is defined in the present embodiment that
the ratio of transfer rate to computation rate which may be
preferably one (1) when the data transfer rate and the com-
putation rate are equal.

Further next, the host determines in block S503 the data
size of the chunk to be optimized under the network-device
performances such that the overlapping ratio may become
closest to one (1) while providing higher data transfer rate.
The host starts to prepare the instruction of computation to be
transferred to the accelerator device using the optimal chunk
size determined in block S400 in FIG. 4.

FIG. 6 shows the detailed process of profiling the data
transfer cost and computation cost in FIG. 5 (S500) for the
host-to-accelerator (h2a) path. The process of FIG. 6 begins
from block S600 and the host allocates the global buffer for
write used for transferring the test computation data in block
S601, and then the host starts the timer object. Then, the host
sets the size of sample data ranging from MIN_SIZE to
MAX_SIZE in the buffer in order to find data transfer rate on
the data size. In block S604, the host writes, i.e., dispatches
the operation commands to invoke an empty kernel program
or an application kernel program in the accelerator devices so
as to execute the computation for a predetermined number of
iterations NUM_ITER in block S605.

After executing a predetermined number of iterations
(NUM_ITER) in block S606 (yes), the host determines
whether or not all events dispatched to the accelerator device
end until terminations of all events are confirmed. Block S606
may be executed so as to obtain more precise values of the
transfer rate and the computation rate by repeating the pro-
cess 0fS604 and S605 with the number defined by the param-
eter NUM_ITER. The term “events” is herein defined as a
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unit transaction of data write to the global buffer and subse-
quent execution of kernel program used to determine the
transfer rate and/or computation rate. When all events com-
plete, the host stops the timer object in block S607 and the
Timer_value of the Timer object is set to the parameter
elapsedTimel or elapsedTime2 in block S608, depending on
whether the purpose of measurements is for transfer rate only
or both transfer rate and computation rate: the two kind of
measurements sets different kind of parameters; however, the
software module used therefore may be shared between the
two measurements.

Next, the host examines whether or not the sample data size
reaches MAX_SIZFE and when the sample data does not reach
MAX_SIZE in block S609 (no), the process is reverted to
block S602 to repeat until the sample data size reaches MAX _
SIZE When the determination returns an affirmative result in
block S609 (yes), then the process ends at block S610 to
terminate the profiling. The parameter elapsedTimel repre-
sents the total execution time when an empty kernel program
is invoked and the parameter elapsedTime2 represents the
total execution time when an application kernel program is
invoked for the sample computation from the accelerator
device, i.e., accelerator. The empty kernel program simply
returns acknowledgements as soon as receiving input data
from the host application without executing any computation
in order to obtain the time required only for the data transfer,
while the application kernel program executes the required
computation in the application using the input data and
returns the acknowledgements upon completion of the kernel
computation.

In the h2a path for the non-associative computation, the
transfer rate may be estimated by invoking an empty kernel
program using the sample data of the size between MIN_
SIZE and MAX_SIZE and the optimal chunk size may be
determined as the data size which shows the highest data
transfer rate.

FIG. 7 shows the detailed process of profiling data transfer
cost and computation cost in FIG. 5 (S500) for the accelera-
tor-to-host (a2h) path. The transfer rate of the a2h path may be
profiled by the data read rate of the host from the accelerator.
The principal processes are almost similar to the process of
FIG. 6 and hence further detailed explanation will be omitted.

According to the present embodiment, the parameters such
as data transferRate, computationRate, and overlappingRatio
are obtained from the results of the profiling and defined as
follows:

transferRate=datasize*NUM__ITER/elapsed Time1

computationRate=datasize*NUM__ITER/
(elapsedTime2—elapsedTimel)

overlappingRatio=transferRate/computationRate

wherein datasize*NUM__ITER is the total amount of data
transferred during the measurements of elapsedTimel or elapsed Time2.

More generally, the optimal data size may be determined to
be the data size satisfying the condition that the value | 1?over-
lappingRatiol is not more than a threshold while providing the
highest transfer rate among the possible data sizes. The above
threshold may be determined to be as close as zero (0) con-
sidering the overlapping requirement over the ranges of the
transferRate and computationRate.

FIG. 8 shows an exemplary relation between the transfer-
Rate 800, the computationRate 810, and the data size. The
transferRate may be low both at the small data size end and
the large data size end because of relatively higher TCP/IP
runtime overheads such that the profile of the transferRate
may typically be a convex showing the highest transfer rate at
a medium data size point.
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On the other hand, the computationRate may typically get
lower with respect to the increase of the data size because the
overhead of application kernel program can increase. In the
case that the computationRate is higher than transferRate
over the range of data size, which may be typically a case in
the conventional network communication infra base, the
crossing point is not present and then the optimal chunk size
may be uniquely determined to be the data size of the maxi-
mum 840 of the convex curve so as to attain the largest
overlappingRatio as defined above.

In turn, in the case that the transferRate and the computa-
tionRate are almost comparative, which is expected to occur
in recent Gigabit Ethernet (Trade Mark) network communi-
cations or optical communications, it may have multiple
crossing points as shown in FIG. 8; both ofthe crossing points
satisfy the condition that the overlappingRatio to be as close
as one (1). When the crossing points are present, the data size
which has higher transferRate is adopted as the optimal chunk
size according to the present invention.

The above determined data size may optimize the data
transfer rate and the computation rate in the loosely-coupled
distributed computing system. Herein above, the profiling
process and the determination of the optimal chunk size has
been explained. Now, the data processing for efficient parallel
computation in the present invention will be explained.

FIG. 9 shows data processing when the data are transferred
to the accelerator devices. In the embodiment of FIG. 9, the
data buffers and sub-buffers are allocated based on the appli-
cation data size and the optimal chunk size as shown in the
pseudo code 900. When the application data size on the host
is larger than (n*chunk size), the application data are split into
at least n chunks corresponding to the sub-buffers on the
accelerator device with the optimal chunk size as the appli-
cation data 910 where the exemplary embodiment is
explained by assuming n=2. When the application data size
on the host is smaller than (chunk size/n), at least n applica-
tion data are aggregated into one chunk with the optimal
chunk size as the application data 920 where the exemplary
embodiment is also explained with n=2.

Then, the data with the optimal chunk size are transferred
to the accelerator device. FIG. 10 depicts the data transfer
operation in the case that the application data size is larger
than the size of optimal chunk. The pseudo code 1000 shown
in FIG. 10 is described as a particular embodiment in OpenCL
language and at line 10, the host determines whether or not the
size of the application data dataSize is larger than chunk-
Size*2. When the dataSize is larger than chunkSize*2, the
host determines at line 20 the number of sub-chunks. Here,
the variable “dataSize” is the application data size to be
transferred from the host to the accelerator device and the
variable “chunkSize” is the optimal size of the chunk for
encapsulating the data transferred.

Subsequently, the host transfers the application data at
lines 30-70 by splitting the application data into the chunk-
Size until all of the application data in the host memory 1010
are transferred to the sub-buffer [i] 1020 of the accelerator
device. Similar data processing for the data aggregation may
be applied to the application data in the host memory when
the application data size is smaller than the optimal chunk
size.

FIG. 11 shows the data processing of the host and the
accelerator device when the application data are aggregated
upon transferring to the accelerator device. The host executes
aparticular operation on the data in the host memory 1 as well
as the data in the host memory 2 in block S1100 so that the
application data being smaller than one-half of the optimal
chunk size; here the variable num is set to be equal to two (2)
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as shown at S1110. The host subsequently aggregates or
encapsulates the application data into the chunk of optimal
size in block S1120. The host then transfers the application
data encapsulated into the chunk of optimal size to the accel-
erator device.

When the accelerator device receives the application data
from the host, the accelerator device stores the application
data in the accelerator device buffers corresponding to the
numbers of aggregated data in block S1130. Then the accel-
erator device invokes application kernel programs to start
kernel operation on the data in the accelerator device buffer 1
and in the accelerator device buffer 2 in block S1140 and
S1150.

FIG. 12 depicts the pseudo codes of the host 1200 for
executing the conventional kernel computation 1210 and the
present invention kernel computation 1220 for associative
operation. In the conventional process 1210, the application
data are transferred in the data size determined by the appli-
cation data prepared by the host and the accelerator device
receives the data at one time; then accelerator device invokes
the application kernel program to complete the kernel opera-
tion.

Alternatively according to the present invention provided
as the pseudo code 1220, the application data are transferred
with the optimal chunk size and the accelerator device
invokes the application kernel programs to start the operation
on the data upon receiving each chunk if the computation is
associative. At the end, the accelerator device invokes the
combination operation to combine the results obtained for the
different chunks. In the present process, the accelerator
device may apply pipeline operation on the application data
so that the entire execution time on the application data may
further be reduced together with the optimization of data
transfer through TCP/IP network.

FIG. 13 shows the scheme of the improvement on the
pipeline computation of the present invention with referenc-
ing the conventional computation efficiency in the case of the
associative computation. In the conventional computation
1300, the application data prepared in the host are transferred
to the accelerator device with the application data size as is.
The prepared non-optimized application data are transferred
to the accelerator device.

When the application data are transferred with the optimal
size as shown in the block 1310, the data transfer efficiency
may be improved according to the present invention; how-
ever, when the kernel computation are invoked upon receiv-
ing the whole application data as shown in the block 1320, the
accelerator device substantially wastes the computation
resources until the application data has been completed
because the pipeline computation is not applied in the accel-
erator device. In this case, the computation on the application
data in the accelerator device ends at the time of Time 1.

In the present invention, the host generates the application
data in the chunks with the optimal size as shown in the block
1330 and, if the kernel computation is associative, dispatches
the instruction of pipeline computation such that the accel-
erator device immediately invokes the application kernel pro-
grams upon receiving a data chunk and starts the pipeline
computation about the chunk. When the accelerator device
completes the computation on all of the data chunks, the
accelerator device invokes a task to combine those partial
results on data chunks and to complete the task allocated to
the accelerator device at the Time 2.

While the kernel computations are executed in parallel
with the transmission of the data chunk such that the waste in
the computation time may be minimized. As shown in the
block 1340, the time required to execute the same task with
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pipelining, Time 2, is significantly shorter than Time 1 with-
out pipeline operation and the present invention may signifi-
cantly improve efficiency of the distributed computation with
loosely-coupled architecture together with the usage of the
accelerators.

FIG. 14 shows the result of improvement of the computa-
tion performance in the system implemented with the present
invention. The loosely-coupled system was constructed by
IBM z/Enterprise platform (z196) and a blade server imple-
mented with IBM POWER 7 connected with Ethernet (Trade
Mark) of 1 G bps and 10 G bps.

The experimental was conducted by using Two-Step Clus-
ter algorithm from SPSS (from IBM Corporation, e.g. refer-
enced by the URL=http://www-01.ibm.conv/software/analyt-
ics/spss/) with the OpenCL implementation. The experiments
were conducted for data splitting and data aggregating trials
with the conventional loosely-coupling system represented
by block 1300 in FIG. 13.

In FIG. 14, the left hand side graph represents the results in
1 Gbps network environment and the right hand side graph
represents the results in 10 Gbps network environment. In the
both graphs, left-bars correspond to references and the right-
bars correspond to the results of the present invention. As
shown in FIG. 14, the present invention provide significant
reduction of execution time when compared to the reference
both in the data splitting case and the data aggregation case.
The optimal chunk size was determined in the above condi-
tion to be 64K bytes for 1 G bps network and 128K bytes for
10 G bps network, which corresponds to 4K and 8K of the
application data size, respectively.

The present invention has been described with reference to
the embodiments shown in the drawings. However, the
present invention is not limited to the embodiments shown in
the drawings and various changes or other embodiments may
be possible which are derived by a person skilled in the art, the
true scope of the present invention may be determined by
appended claims.

The invention claimed is:

1. A method for distributed computing between a host
computer and at least one accelerator device interconnected
through a network, the method comprising:

profiling a data transfer rate and a computation rate for a

range of data sizes to find an optimal chunk size for the
data transfer through the network;

splitting or aggregating a size of a data stored in a memory

of the host computer for encapsulating the data into a
chunk with the optimal chunk size;

dispatching the encapsulated data to the accelerator device;

and

instructing pipeline computation to the accelerator device

with respect to the encapsulated data received,

wherein the optimal chunk size is determined to be the data

size where an overlapping ratio between the data transfer
rate and the computation rate is closest to 1 and if there
are multiple such data sizes for which the overlapping
ratio is closest to 1, determining the optimal chunk size
as the data size that has the highest data transfer rate and
that which is between a minimum data size and a maxi-
mum data size transmitted during profiling.

2. The method of claim 1, wherein the overlapping ratio
between the data transfer rate and the computation rate is
computed from actual transmission time durations.

3. The method of claim 1, wherein the optimal chunk size
is determined to be the data size which has the highest data
transfer rate between a minimum data size and a maximum
data size transmitted during the profiling in relation to the
computation rate.
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4. The method of claim 1, wherein the instructing pipeline
computation further comprises:

instructing multiple writes of the encapsulated data for

numbers of chunks into buffer objects in the accelerator
device; and

instructing execution of operations of the accelerator

device on the encapsulated data upon receiving the
encapsulated data.

5. The method of claim 1, wherein the data size is subjected
to the splitting in a case where the data size is larger than the
optimal chunk size and the data size is subjected to the aggre-
gating in a case where the data size is smaller than the optimal
chunk size for the encapsulation of the data.

6. The method of claim 1, wherein the accelerator device is
selected from a computer being implemented with an appli-
cation program.

7. The method of claim 1, wherein the accelerator device is
networked to the host computer with the TCP/IP network.

8. A non-transitory computer readable storage medium
having computer readable instructions stored thereon that,
when executed by a computer, implement a method for dis-
tributed computing between a host computer and at least one
accelerator device interconnected through a network, the
method comprising:

profiling a data transfer rate and a computation rate for a

range of data sizes to find an optimal chunk size for the
data transfer through the network;

splitting or aggregating a size of a data stored in a memory

in the host computer for encapsulating the data into a
chunk with the optimal chunk size;

dispatching the encapsulated data to the accelerator device;

and

instructing pipeline computation to the accelerator device

with respect to the encapsulated data received,

wherein the optimal chunk size is determined to be the data

size where an overlapping ratio between the data transfer
rate and the computation rate is closest to 1 and if there
are multiple such data sizes for which the overlapping
ratio is closest to 1, determining the optimal chunk size
as the data size that has the highest data transfer rate and
that which is between a minimum data size and a maxi-
mum data size transmitted during profiling.

9. The computer readable storage medium of claim 8,
wherein the overlapping ratio between the data transfer rate
and the computation rate is computed from actual transmis-
sion time durations.

10. The computer readable storage medium of claim 8,
wherein the optimal chunk size is determined to be the data
size which has the highest data transfer rate between a mini-
mum data size and a maximum data size transmitted during
the profiling in relation to the computation rate.

11. The computer readable storage medium of claim 8,
wherein the instructing pipeline computation further com-
prises:

instructing multiple writes of the encapsulated data for

numbers of chunks into buffer objects in the accelerator
device; and

instructing execution of operations of the accelerator on the

encapsulated data upon receiving the encapsulated data.

12. The computer readable storage medium of claim 8,
wherein the data size is subjected to the splitting in the case
where the data size is larger than the optimal chunk size and
the data size is subjected to the aggregation in the case where
the data size is smaller than the optimal chunk size for the
encapsulation of the data.

13. The computer readable storage medium of claim 8,
wherein the accelerator device is selected from a computer
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being implemented with an application program and the
accelerator device is networked to the host computer with the
TCP/IP network.

14. A host computer for distributed computing between the
host computer and at least one accelerator device intercon-
nected through a network, the host computer comprising:

one or more processors coupled to memory executing:

a profiler part configured to profile a data transfer rate and

a computation rate for a range of data sizes;

a size optimizer part configured to find an optimal chunk
size for the data transfer through the network from the
profiled data transfer rate and the computation rate;

an encapsulation part configured to encapsulate a data
stored in memory of the host computer by splitting or
aggregating into a chunk with the optimal chunk size;
and

adispatch part configured to dispatch the encapsulated data
to the accelerator device and instructing pipeline com-
putation to the accelerator device with respect to the
encapsulated data received,
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wherein the optimal chunk size is determined to be the data
size where an overlapping ratio between the data transfer
rate and the computation rate is closest to 1 and if there
are multiple such data sizes for which the overlapping
ratio is closest to 1, determining the optimal chunk size
as the data size that has the highest data transfer rate and
that which is between a minimum data size and a maxi-
mum data size transmitted during profiling.

15. The host computer of claim 14, wherein the optimal
chunk size is determined to be the data size which has the
highest data transfer rate between a minimum data size and a
maximum data size transmitted by the profiler part in relation
to the computation rate.

16. The host computer of claim 14, wherein the dispatch
part instructs multiple writes of the encapsulated data for
numbers of chunks into buffer objects in the accelerator
device and instructs execution of operations of the accelerator
on the encapsulated data upon receiving the encapsulated
data.



